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A b s M L  Resulw are presented for YD magnetic superlattices consisling of alternating 
films of cubic Heisenberg femmagneu. Pking into amount lhe nat-nearest-neighbour 
(NNN) interactions, an aplicit equation for the spin-wave dispersion relation is oblained 
means d a Iransfer matrix method. Numerical mulls am presenled tor Fa: femmagnetic 
films with different values of the achange constant ratio 1) = J(NNN)/J(NN). If 1) # 0, 
for every frequency Y, mere are hvo pairs of allwed values of wavenumbers k and in 
some frequency range both can M I  if 1) > 1. For the superlattice, a mmparisan with 
the dispersion relation obtained considering only NN interaction is made and the main 
physical tealures are discussed. 

1. Introduction 

The recent development of exceptionally good quality magnetic superlattices has made 
possible the study of the intriguing properties of these artificial periodic layered 
structures, in which the thicknesses of the constituent films can be as thin as a few 
atomic layers (Parkin ef al 190). It is hown that when the layer thicknesses are 
very small, the spectrum of the elementary excitations may possess unique physical 
properties which are distinct from those of the individual layers. These differences 
may be accounted for by the fact that the excitations of neighbouring layers are 
coupled via the interfilm exchange interaction, both in the magnetostatic (Camley ef 
a1 1983, Camley and Cottam 1987 and Almeida and Mills 1988) and exchange regimes 
(Albuquerque er a1 1986). The specific regime is determined by the wavenumber K 
of the excitation. 

The magnetostatic limit has already been proved to be particularly important for 
long-wavelength modes on the surface of a semi-infinite specimen, as well as in a 
thin film, and has been extensively investigated; for a review see Cottam and Tilley 
(1989) and references therein. On the other hand, for wavelengths comparable with 
the interatomic spacing a, the exchange interaction between adjacent spins is the 
main physical parameter and must determine the general behaviour of the magnetic 
excitations. Moreover, in this wavelength regime, it is necessary to use a microscopic 
theory to study these modes which are usually called spin waves. 

In this paper we present a detailed study of 3D magnetic superlattices composed 
of altemating cubic Heisenberg films. The dispersion relations for spin waves will 
be obtained taking into account the exchange interaction between not only nearest 
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neighbours (NN) but also next-I"St neighbours (NNN). It mUt be said that, beyond 
academic curiosity, the rapid development of deposition techniques has allowed 
preparation of wry thin films and theu possible applications in practical devices, such 
as delay lines and filters (Camley 1987), require a more realistic model to describe 
them. 

The discussion presented here fo~lows Similar work recently presented by H a d h d  
et d (1991a, b) where the authors study lattice dynamics for ID superlattices including 
N" as well as NN interactions. 

The plan of this paper is as follows: in section 2 we present the equation for 
the dispersion relation of bulk spin waves which provides the wavevectors for each 
medium. An equation for the spin-wave dispersion relation in a magnetic superlattice 
composed of two cubic Heisenberg ferromagnetic films is obtained in section 3. 
Numerical results are presented for the case when both constituent films have their 
spins locaalied in FCC lattices. A comparison with the dispersion relation obtained 
taking into account only NN interaction is also made in this section. Fmally, in 
section 4, the main resula are briefly summarized. 

N S Almeida et al 

2 Bulk modes 

'Tb study spin waves in magnetic superlattices (MSL), taking into account the exchange 
interaction between nearest and next-nearest neighbours, we consider a MSL as shown 
in figure 1. This artificial layered structure is described by the Hamiltonian 

where K ( i , i  + 6,) denotes the exchange force between NN, which is equal to 
JIA (JIB) if both spins belong to the layer A (B), or I, if they are in different 
layers; K ( i ,  i + 6,) is the equivalent parameter for NNN and can assume the values 
Jt4, JZB and I2 for layer A, B or interlayer exchange, respectively. 

t cell n 

*re 1. Notation lor superlattice calculations. 

By using the random phase approximation, ie. considering ( Sf), equal to the 
thermal expectation value of the z-component of (S), the equation of motion for 
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s+ = ~7 + isiy can be written as: 

I 

For an infinite specimen A or B (either nA or nB - CO) there are only bulk spin 
waves. The dispersion relation curves for these modes are obtained from the infinite 
series of equations represented by (2.2). Solutions for these equations can be found 
by the m a &  

(S:), = exp[i(k,. r - w t ) ] .  (2.3) 

The substitution of (2.3) in (2.2) gives 

Fu'J = 2% [J1,(.1- 7 % )  + JZ,(Z, - Y%)I (2.4) 

where Sa = (S:), z1 and z, are the number of the NN and NNN sites respectively 
and -& and 7% are given by 

r& = exp(ik. 6,) Q = A or B. 
NNN 

(2.56) 

If we assume the spins to be localized in a simple cubic structure (zl = 6 and 
z, = 12) 7; are given by 

7E = 2 ( m  q:a + cos q:a + cos q: a )  (2 .64  

(2.6b) -& = q c o s  qza cosqza +cos qzams q2a + cosqiacos q i a )  

with a denoting the length of the unit cell of the specimen. 
It should be noted that for modes propagating parallel to the z a i s  (q; = qz = 0, 

and q; = q,), -fk = 2 ( 2 + c o s q , a )  and yZq; = 4 ( 1 + 2 c o s q , a ) .  Therefore, the 
dispersion relation for these modes can be written as 

a-/(  1 + 4 ~ , )  = 1 - cos q,a (2.7) 

where we have defined the characteristic parameters a, = 1iw/4S,J,, and q,  = 
J 2 , / J l 0 .  As can be Seen in (2.7), for a simple cubic lattice, the effect of the NNN 
interaction on the spin waves propagating along the z-axis is only the introduction 
of a scale factor in the energy. As a consequence, the dispersion curves have no 
qualitative difference from that obtained considering only nearest neighbours. 
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On the other hand, for an Fcc lattice we have z1 = 12, z2 = 6 and the sum are 
given by 

-& = 4(m qza/2cos qEa/2 + cos qza/2ms q:a/2 + ms qza/2cos q:a/2) (2.&) 

-& = 2(cos qEa + cos qEa + COS qia) .  (2.a) 

Therefore, for propagation along the z-axis, the bulk dispersion relation curves are 
obtained from: 

q, cos2 koa + 2cosk,a - (2+  q, - R,/2) = 0 (2.9) 

with k, = q,/2. 
Equation (29) has two solutions for k,, say ky and k;. In the low-frequency 

region, Le. R, < 2( 1 + ~ , ) ~ / q ~ ,  at least one of these values is real. Moreover, from 
(2.9) it can be Seen that there k a critical value for q,(qi = 1.0) above which there 
is a frequency interval where both values of k, are real. The frequency region is 
determined by 8 < R, < 2(1 + q,)'/q,. It should be noted that the critical value 
for q, obtained here corresponds to the case where the N" and NN forces are equal 
and is much bigger than critical value 0.25 found for the equivalent parameter by 
Hadizad ef d in 1~ lattice dynamics. In figure 2 we show the Spectra of these spin 
wves for q, = 0.5 (figure 2(a)) and 1.5 (figure 2(b)). In the first case one root, kf 
say, has a similar form to that found for NN exchange for frequencies below R, = 8. 
In this interval k; has the form ?ria + iy. Fbr 8 < 52, < 9 both roots have the form 
rr/a + iy. In the high-frequency region R, > 9 both roots are in the complex plane 
and of the general form z + iy. In figure 2(b) it is seen that the effect of a larger 
NNN exchange is to produce a frequency intenal above R = 8 in which both kp and 
k; are real. These forms are very similar to those found by Hadizad et a1 (1991a) 
for the monatomic ID lattice. 

3. Superlattice 

We mnsider a magnetic superlattice as depicted schematically in figure I. Each point 
of this diagram corresponds to one atomic plane. Therefore, for spins localized in 
a simple cubic lattice, a unit cell of the lattice is represented by two points, while 
for an FCC structure, the unit cell is represented by three points. As can be seen in 
figure 1, a spin that is not at the interface or in the next-neighbour atomic plane has 
the same equation of motion as a spin in the corresponding bulk medium. Thus the 
spin-wave amplitude must be given, witbin each film, by a linear combination Of the 
positive and negative solution kkf  and +k; of the dispersion relation (2.9), namely 

s+ = A eiki'(z-zmA) + ~ , ~ - i k i ' ( = - * . ~ )  + c n eik?(z-zmd + ~ , ~ - i k ? ( ~ - z . d  (3 .1~)  

in film A of cell n, and 

s+ = ,yn&(z-~-u)  + F,e- i k ? ( z - z a )  + G n eikF(z--IIs) + H n e - i k % z - z d  (3.lb) 
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ka 

ha 

Plgum 2 Solutions of bulk dispersion quation (29) for spin waves in m pa:  lattice 
represented BS Cl = Sw/(4S,+ J la )  vemus La for (a) qa = J&/Jt. = 0.5 (b) 
qo = 1.5. n e  mnvention for ka of the form r + i y  m that these values are nprcsented 
as huken NNCS with y as the abscissa measurrd from r. Rmls of the form z + iy 
m nprescnted as bmken CuIws with z (measured from zero) below r and y BS the 
abscissa measured f” r. 
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in Nm B of the same cell. Here, znA and tnB are the position of the first A and B 
atomic layer in the nth cell of the superlattice and are given by 

N S Aheido et a1 

znA = ( n  - 1 ) N a  + a 

z n B = ( n - l ) N a + ( n A + l ) a  

where N a  = (nA + nB)a = L, is the length of the unit cell at the superlattice. 
By introducing, in each medium, the column vectors I@,,) and IQ,,) defined by 

(3.3) 

the equation of motion for spins at the atomic layers labelled by a, b, c and d in 
figure 1 relates the vectors IQ,,) and IQ,,) through the matrix equation 

M(w,Ic:,kc:,A,B,2n,)lQn) = N ( w , k : , k : , B , A , l ) I ~ ' , ) .  (3.4) 

Similarly, the equation of motion for spins at layers labelled by e, f, g and h allows 
us to write 

M(w,k~,le,8,B,A,2n,)1Qn) = N ( w , k ~ , k , B , B , A , l ) l l p , + ~ ) .  (3.5) 

The explicit forms of the matrices M(w,k, ,k , ,a ,p,N)  and N(w,k, , Ic , ,u ,p,N)  
are given in the appendix. 

Elimination of IQ,,) between (3.4) and (3.5) gives 

I@n+l) = TI@,) (3.6) 

where the transfer matrix T is defined by 

T = N-'(w, k, B B  , k, , B,A,  1) M(w,k , ,  B B  kz, B,A,2nB) N- ' (w,  k:, kt ,A, B ,  1 )  

M(w 7 k: 3 A, B 1 2 n ~ ) .  (3.7) 

The matrix T has its determinant equal to 1 and therefore its eigenvalues, 
X j  ( j  = 1 to 4) obey the relation 

X,X,X,X, = 1. (3.8) 

On the other hand, Bloch's theorem gives 

I"+,) = aP(iQL)l@n) (3.9) 

where Q is the Bloch wavevector (not necessarily real) and L is the size of the unit 
cell of the superlattice. Furthermore, time-reversal invariance requires that if Q is a 
root, so is -Q. A comparison between (3.9) and (3.6) show us that exp(iQL) are the 
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eigenvalues of T and therefore its eigenvalues occur in pairs (A,, A;') and (A,, A;') 
related to the Bloch wavevector Q ,  by 

Q,L = *iln(Aj) i = 1,2. (3.10) 

The formalism that has been presented is similar to that used in the ID lattice 
dynamics problem (Hadizad d a1 1991a). As in the case, once T is known, the 
eigenvalues and therefore the Bloch wavevectors can be obtained numerically by 
standard methods. Some examples of calculated dispersion curves are shown later; 
it is mnvenient to start with results for the limiting case of NN forces only. The 
dispersion relation for spin waves propagating in an infinite medium with only NN 
interaction i obtained by taking vu = 0 in (2.9). In this cdse there is only one 
wavevector which h related to the frequency by 

(3.11) 

where the variables are those used earlier. The dispersion relation for a superlattice 
can be obtained from (3.11) using the approach of Albuquerque d a1 (1986). "pica1 
results of a numerical calculation of the dispersion curve are shown in figure 3; it may 
be seen as arising from the rsual folding of the bulk curve into the mini Brillouin 
zone. 

2 

Figure 3. Superlattice dispersion cum for m 
interactions only for a superlattice with nA = 
7, ng = 3. Ihc graph is pmented as 
fl A w l ( 4 S ~  JM) vemw Q L  where L is the 
superlattice period. Ihc other prametem are 

0 
0 1 2 3 

PL SS=SA, J l s = 1 . 5 5 1 ~ a n d I 1 = 0 . 5 J ~ .  

Some dispersion curves to show the effects of inclusion of NNN forces are shown 
in figure 4. Figure 4(a) may be mmpared with figure 3 to show that the effect 
of relatively weak NNN forces is to produce some shifting of the dispersion curves 
in frequency but no qualitative changes. Figure q b ) ,  for stronger N" forces, shows 
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somewhat greater changes in the frequency range Cl < 8.0 where there is just one real 
mot in the hulk, figure 2 More importantly, figure 4(c) shows a mode-anticrossing 
region for Cl > 8.0 in the region of two real bulk roots. The form of thii is dependent 
on the monolayer number, as seen in figure 4(d). In figures 4(a) to (d)  the interlayer 
NNN exchange is fairly weak. A striking effect of increasing this parameter is seen by 
comparing figures 4(e) and qc); the anticrossing becomes so strong as to produce a 
range of Q in which no propagation occurs. 

N S Aheida et a1 

casv a 10 

OL 

aas 

3 

- 
$1 

0 I 1 3 
QL 

8 05 
0 1 

QL 
0 1 3 ", .. 

INgurr 4 Superlattice dispersion curves with NNN interactions included. lke NN 
parameters are the Same as in figure 3. Layer numbers arc nh = I .  ng = 3 acept  for 
in figure 4(d) in which n A  = 5, n g  = 3. NNN parameters arc JuIJu = J m l J t ~  = 
I ~ / I I  = 0.5 in figure 4(4), J m l J u  = Jm/J lg  = 1.5, I ~ I I  = 0.5 in figUrCs 4(b) to 
4(d)and J u / J u =  J ~ / J ~ g = I ~ / I ~ = 1 . 5 i n f i g u r e 4 ( C ) .  
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4. Conclusions 

The derivation of the bulk mode dispersion equation in section 2 leads to results 
which are similar to those found in the corresponding lattice dynamical calculation. 
As in that case, for a sufficiently large value of the N" exchange mnstant two real 
d u e s  of the wavenumber are found in a frequency range above the frequency Cl = 8 
of the top of the band when only NN forces are included. However the critical 
d u e  J J J 1  = 1 for this to appear is much larger than the value of 0.25 found in 
one-dimensional lattice dynamics. 

The main result of this paper is the derivation of the dispersion relation which 
is given in implicit form in section 3. In view of the large number of parameters, 
illustration has been restricted to a small number of cases which are intended to bring 
out points of particular interest. As might be expected from the analogous lattice 
dynamics, qualitatively new results are found in the range > 8 for strong N" 
interactions. 
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Appendix 

The matrices used in section 3 can be obtained by substituting equations (3.la) 
and (3.lb) in equation (2.2), to obtain an equation of motion for spins localized at 
positions labelled by a, b, c and d in figure 1. The algebra is straightfonvard (if 
laborious) and details are omitted. 

These four equations relate the coefficients (A, , B ,  , C, , D,) of the layer A with 
those (E,, , F,, G,, H,) in B in the matrix form shown below: 

F( f i , -k? ,A)  F(n,kf ,A) F(n , -k$ ,A)  E ( f i , k $ , A )  
q(fi,-k?,A) q ( Q 7 k f , A )  dn,-k;lg,A) tl(fi,k$,A) 

-2iZB -2iZB - 2 i ,  -2iZB 

ekfa 2 n ~  0 0 
0 e - k t a  2 n ~  0 

1 r ( -q ,m wf, B) r ( -k f ,  B) w:,B) 

0 0 0 

0 0 e k t a  2nA 
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where the functions used above are defined by 

N S Aheida et a1 

J20 so ( 1  - ms ka) - - E(c i ,k ,u )  = (cl-4- JIO so 

JIAsA 2JlAsA 

q(ci ,k,cr)= ( n - 2 a ( 2 - e x p ( i k a ) -  J S  - J20 so ( 2  - exp(i2ka)) 
~JIASA 

A comparison between the equations (Al) and (3.4) gives the matrices M and N 
used in the body of the paper. 
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